tinyML Talks on September 8, 2020 “The Deep (Learning) Transformation of Mobile and Embedded Computing” by Nicholas Lane

We held our next tinyML Talks webcast. Nicholas Lane from University of Cambridge has presented The Deep (Learning) Transformation of Mobile and Embedded Computing on September 8, 2020 at 8:00 AM Pacific Time.


Mobile and embedded devices increasingly rely on deep neural networks to understand the world – a formerly impossible feat that would have overwhelmed their system resources just a few years ago. The age of on-device artificial intelligence is upon us; but incredibly, these dramatic changes are just the beginning. Looking ahead, mobile machine learning will extend beyond just classifying categories and perceptual tasks, to roles that alter how every part of the systems stack of smart devices function. This evolutionary step in constrained-resource computing will finally produce devices that meet our expectations in how they can learn, reason and react to the real-world. In this talk, I will briefly discuss the initial breakthroughs that allowed us to reach this point, and outline the next set of open problems we must overcome to bring about this next deep transformation of mobile and embedded computing.

Nic Lane (http://niclane.org) is a Senior Lecturer (Associate Professor) in the department of Computer Science and Technology at the University of Cambridge where he leads the Machine Learning Systems Lab (CaMLSys – http://http://mlsys.cst.cam.ac.uk/). Alongside his academic role, he is also a Director (On-Device and Distributed Machine Learning) at the Samsung AI Center in Cambridge. Until May 2020, Nic was an Associate Professor in the Computer Science department at the University of Oxford. Earlier in his career, Nic held dual appointments at University College London (UCL) and Nokia Bell Labs. Nic has received multiple best paper awards, including ACM/IEEE IPSN 2017 and two from ACM UbiComp (2012 and 2015). In 2018 and 2019, he (and his co-authors) received the ACM SenSys Test-of-Time award and ACM SIGMOBILE Test-of-Time award for pioneering research, performed during his PhD thesis, that devised machine learning algorithms used today on devices like smartphones. Nic served as the PC-chair of ACM MobiSys 2019, a role he has performed also for ACM HotMobile and ACM SenSys in the past. Most recently, Nic is the 2020 ACM SIGMOBILE Rockstar award winner for his contributions to “the understanding of how resource-constrained mobile devices can robustly understand, reason and react to complex user behaviors and environments through new paradigms in learning algorithms and system design.” Prior to moving to England, Nic spent 4-years at Microsoft Research based in Beijing as a Lead Researcher. He received his PhD from Dartmouth College in 2011. Nic also received an M.Eng from Cornell University (2004) and a B.Sc (Hons) from the University of Waikato (2001).


Watch on YouTube:
Nicholas Lane

Download presentation slide:
Nicholas Lane

Feel free to ask your questions on this thread and keep the conversation going!